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In the second of these three articles on phase-type (PH ) distributions in healthcare
modelling I will introduce Coxian distributions, a particularly useful subclass, and explain
briefly how they have been used in healthcare modelling. In the first article (see Fackrell
[3]) the case for using stochastic models in healthcare was made, and PH distributions
were introduced. Fackrell [2] contains a more comprehensive treatment and bibliography.

An order p Coxian distribution has a representation of the form
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where 0 < λ1 ≤ λ2 ≤ . . . ≤ λp. Figure 1 shows the state transition diagram for an order p

Coxian distribution.
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Figure 1: State transition diagram for an order p Coxian distribution.

The first thing we notice is that the representation (1)–(2) depends on only 2p − 1
parameters. General PH representations require p2 + p − 1 parameters, but only 2p − 1
parameters are needed to define the distribution uniquely. Thus, general PH distributions
are considerably overparameterized, whereas Coxian distributions are not. When it comes
to fitting data with PH distributions, Coxian distributions have been the prefered option
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for practitioners in healthcare modelling and elsewhere, partly because of this reason -
there are a lot less parameters to estimate.

Coxian distributions exhibit quite a lot of flexibility. Figure 2 shows the density func-
tions for three order 4 Coxian distributions with the same generator T , but different vectors
α. We can see by their shapes that they exhibit much more flexibility than the exponential
distribution, which should come as no surprise - they rely on 7 free parameters instead
of just one! Indeed, Coxian distributions are more versatile than both hyperexponential
distributions and generalized Erlang distributions, which also depend on 2p−1 parameters,
see Fackrell [2].
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Figure 2: Density functions for three different order 4 Coxian distributions with λ1 = 1,
λ2 = 2, λ3 = 3, λ4 = 4.

A curious mathematical fact is that any PH distribution whose generator T is an upper
triangular matrix, has a Coxian representation of the same or lower order, see Cumani [1]
or O’Cinneide [9]. For example, the hyperexponential distribution with representation
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has an equivalent Coxian representation
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In fact, any PH distribution whose generator T has only real eigenvalues has a Coxian
representation of some order. The million dollar question is, of course, how big is the
order? It is widely believed that there are examples of PH distributions of relatively low
order that have Coxian representations of high order. Nevertheless, Coxian distributions
are a very important subclass of PH distributions and need to be studied.

Coxian distributions have been popular with healthcare modellers because the states
(or groups of states) can sometimes be given a physical interpretation. For example, Xie,
Chaussalet, and Millard [10] modelled the length of stay (LOS) of geriatric patients in
residential and nursing home care with two, 2-state Coxian distributions. Figure 3 shows
the state transition diagram for their model. Here, patients enter the system via the
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Figure 3: State transition diagram to model the length of stay in residential and nursing
home care.

residential home care block where they can spend a short time (state 1 only), or a long
time (state 1 followed by state 2). They can be discharged from either state, or progress
to nursing home care, where again they can spend a short time (state 3), or a long time
(states 3 and 4) before being discharged or dying.

The corresponding PH representation for the model is

α =
(
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)

(7)
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We remark here that because T is an upper triangular matrix, the PH distribution with
representation (α,T ) is a Coxian distribution.

The authors fitted the Coxian distribution to four years data from the social services
department of a London borough using maximum likelihood estimation. They reported
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λ1 = λ2 = µ2 = 0, ν1 = 0.000228, µ1 = 0.000855, λ3 = 0.010874, µ3 = 0.006138, and
µ4 = 0.001275. The LOS in residential care was modelled by an exponential distribution
(state 2 was unneccessary) with an average LOS of 923 days, with 21% of patients moving
on to nursing home care and the rest getting discharged. The LOS for short stay patients in
nursing home care (36 %) was modelled with an exponential distribution (average LOS 59
days), and the LOS for long stay patients (64 %) was modelled with a 2-state generalized
Erlang distribution (average LOS 843 days).

Other notable papers where Coxian distributions have been used to model systems in
healthcare include Faddy and McClean [4] and [5], Faddy and Taylor [6], McClean, Faddy,
and Millard [8], and Marshall and McClean [7].

In the next issue’s article I will propose some new ways in which PH distributions could
be used in healthcare modelling.
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